I See Reasoning – Y1 and Y2: Exploring Concepts, Creating Reasoning Habits

We want KS1 children to develop a deep understanding of Y1 & Y2 maths content. We also want young children to be able to explain their thinking, identify common errors, estimate, explore ideas and think creatively. The tasks in the I See Reasoning – Y1 and I See Reasoning – Y2 eBooks help to give children these experiences, inspiring a wide range of mathematical conversations and explorations.

These new eBooks have replaced I See Reasoning – KS1. They follow the same format as the original eBook, but include many, many more examples (365 tasks in the Y1 eBook and 392 tasks in the Y2 eBook) and they have a range of new types of reasoning questions. Here are some of the key ideas:

Non-counting strategies, estimation, reasoning

A HUGE focus is placed on children explaining answers using non-counting strategies. This includes ‘how many dots’ questions, where children describe their non-counting strategies. It involves calculations that border 10 or subtractions with small differences. The emphasis is not ‘what’s the answer?’ but instead ‘how did you know?’ or ‘what do you visualise?’ The questions are highly visual and don’t require too much reading.

Misconceptions, visuals, patterns

The questions introduce the key I See Reasoning question structures. Children will learn to spot mistakes, explain mistakes, compare questions and spot patterns. They will be challenged to explain what they noticed and find all of the answers. In doing so, children will be trained in the routines of thinking mathematically, routines that can be extended in KS2. This will help to build reasoning tasks into every maths lesson, giving schools a progressive approach to how reasoning is taught.

Exploration

There are lots of questions, of many different forms, for exploring mathematics. This includes estimation tasks, open challenges or questions with different possible answers. There are also a range of spatial reasoning tasks, for children being able to visualise items from different perspectives.

Depth

There are also a wide range of tasks to add challenge! These are very diverse and sometimes require children to find multiple answers or explain their thinking. These tasks are highly varied depending on the area of the maths curriculum that they cover.

The introductory price of the eBooks is £30 each (including VAT). From 1st January 2026, they will cost £35 each (including VAT).

I See Reasoning – Y1 and I See Reasoning – Y2 lay the foundations for children to experience maths as a thinking, exploring, explaining subject. If you click on the links, you can view a sample section of each resource. I hope that they inspire the children in your class and give you many fantastic classroom moments!

UPDATED BLOG: My 2023-2024 Writing Challenge

I have managed to post an example task for a streak of 107 days this academic year. However, at this point I’m going to redirect my efforts as I have decided to focus on writing Deconstructing Word Questions Y2-Y5. I see this as being my greatest possible contribution. It’s hard to properly communicate the vision for these resource using photos – it’s better done using short videos. I will spend the Spring term focusing on writing the resources and trialling them in lots of different classrooms. Then, in the summer term, I will post a video a week explaining how, I believe, we can transform the teaching of word questions. I will also send out lots of free resources to trial to the people on my mailing list. I am so excited about what is to come!

The resources will be released some time between September 2024 and January 2025, depending on the outcomes from the classroom trials.

Below is my original blog post:

Day 1: The Mountain Pass Logic Puzzle and The Mountain Pass Answers

I’m passionate that all children get to experience the true richness of mathematics and for maths to be an intellectually and emotionally rich pursuit. To this end, over the last 10 years I’ve strived to create maths tasks that generate conversations, give space for curiosity and provide opportunities for extended exploration. I hope that my resources are inspirational and simple to integrate with your maths curriculum.

I have so many plans for new resources! I See Reasoning – Y1 and I See Reasoning – Y2 are being written: they will be comprehensive resources for building number sense and embedding reasoning in daily lessons. Deconstructing Word Questions will be written for Y1-Y5 after the successful launch of the Y6 eBook. Then I will go back to my roots: writing a range of logic puzzles and problem-solving ‘task families’, so problem-solving skills can be built coherently.

To get into the routine of writing new resources every day, I have set myself a challenge: to post a new task every school day on social media for the whole of the 2023-2024 academic year. Images or videos will be posted at 7:30pm every day on Twitter, Facebook and on my NEW INSTAGRAM FEED. At the time of writing, I have exactly 0 Instagram followers!

I am actively seeking your feedback on all my posts. Specifically, what would you change about each task? Or if you use any of the tasks in the classroom, what age of children did you use the task with and what happened? I won’t always respond immediately – I can struggle with insomnia so I’m usually off social media after 8pm – but I will read every comment. Feedback can be emailed to iseemaths@hotmail.com

I have taken so much from the feedback given by teachers about my work – it helps me to reject my bad ideas and improve my half-baked ones! I love to receive any suggested improvements or comments.

The first post will be on 4th September. Until then, have a great summer – Gareth

Learning content, developing habits of thinking

I’ve taken a lot from listening to Dylan Wiliam speaking over the years. One of his insights has particularly resonated with me: the idea that the improvement in learning that a child derives from being in the class of a highly effective teacher extends well beyond the time that the child is in that teacher’s class. For example, if a child experiences expert teaching in Y3, they are likely to make more rapid progress in Y4 and beyond too.

It is, therefore, hard to judge the true effectiveness of teaching from end-of-year maths assessments. It might give an indication of progress made in the content goals for that year but it won’t give the full story of the long-term impact of that teaching. The lens is too narrow. If all our efforts are placed on getting children to achieve their ‘content goals’ for the current day/block/year, we may always be limited in our impact. We want out teaching to help children to learn the content and to build children’s capacity to learn other new content.

I have come to think of each maths lesson as an opportunity to develop a child’s content knowledge and their habits of thinking. Of course, surface knowledge is important as reasoning doesn’t happen in a vacuum. However, I generally look at the content of the lesson as the context through which I will build the mathematical habits of mind. This may involve helping children to represent ideas visually, explain misconceptions or spot patterns. Perhaps children will be challenged to create their own examples. Or maybe a task will require an element of perseverance and self-regulation. This approach may have a short-term cost in the speed at which content knowledge is acquired, but this is likely to be a worthwhile investment. It can give the children a richer experience of being a mathematician.

My simple encouragement is to be aware of the need to develop content knowledge and build mathematical habits of mind. To focus on the detail as well as being aware of the bigger picture. Content knowledge is more tangible and it is easier to assess. The habits of thinking that are developed, though, will play a powerful role in children’s long-term mathematical success. We want all children to develop these habits, not just pupils whose attainment is already relatively strong. It will also require us to make thoughtful choices about what we don’t teach. Where time is limited, content is usually prioritised.

A starting point might be to establish What, as a school, do you consider to be your ‘mathematical habits of mind’. What are the characteristics that you want to build within children over time? How are they explicitly taught and made visible? And how do we promote and celebrate children’s progress is developing these habits? My aim, of course, with the I See Reasoning eBooks is to write questions and tasks that help children to develop these habits. Schools generally have a clear plan for how children learn their number bond facts. I want schools to have the same clarity in how children reason mathematically and grow as creative, independent thinkers.

If you have any thoughts on this blog, please share them with me by emailing iseemaths@hotmail.com or commenting below – Gareth.

Shape Puzzles in Y2: small numbers, deep challenge

I’m busy writing I See Problem-Solving – Y2, a resource that I’m super-excited about. It will provide sequences of related questions, tasks and open-ended challenges so children can understand and then explore different problem-solving tasks. I will explain the philosophy behind the resource in a series of future blog posts.

For now, have a look at this sequence of tasks, how it builds children’s understanding of additive reasoning and lays the foundation for algebraic thinking.

Part A: Children are introduced to the idea that a shape represents a number.

Part B and C: Children find the value of each shape. They look for lines made using the same shape. Otherwise, they workout how the sum of a line increases when one more shape is added. Notice the top right example: an extra star is added but the sum for the row does not change. This shows that the star is worth zero!

Part D and E: They apply these principles to find the value of the shapes in these grids, where the sum of each column and row is given.

Part F: Then children can make their own examples.

This blog explains how these ideas can be extended using the I See Reasoning resources in KS2. If you want to trial I See Problem-Solving – Y2 as it is being written, click here to join the I See Maths mailing list

For more information about Gareth Metcalfe’s INSET and twilight maths training click here or for CPD sessions about using the I See Reasoning eBooks. My passion and expertise is in developing children’s ability to reason mathematically and building children as mathematical problem-solvers.

Shape Puzzles in KS2: exploring additive reasoning, laying foundations for algebra

I love using shape puzzles to explore some of the principles of algebraic thinking. The examples in this blog post are from I See Reasoning – Y4 (there are shape puzzles in all the KS2 I See Reasoning eBooks) and I often use these questions with older children too. I’ve found children love completing these questions and love creating their own puzzles!

Step 1: These questions help to uncover the key strategies for working out the value of the shapes.

Left example: the second line has one more circle than the first line and its total is 5 more. Therefore one circle = 5.
Right example: a rectangle is 2 more than a diamond. The child answering this question extended the pattern to show that three diamonds have a sum of 12 and therefore one diamond = 4.

Step 2: We complete shape puzzles using the thought processes from step 1. There are prompts (which can be used or can be hidden) to suggest possible starting points.

Step 3: Children complete different puzzles, explaining their starting points.

Step 4: Time for children to design their own puzzles! I specify two things: there can’t be any rows/columns that are made using only one shape; and the designer of the puzzle must be able to explain a possible starting point.

This webpage, designed by the brilliant Jonathan Hall, enables you to automatically generate these puzzles. And this blog explains how I’ve introduced shape puzzles to children in Y2. A fantastic way to explore some of the big ideas of algebra!

For more information about Gareth Metcalfe’s INSET and twilight maths training click here or for CPD sessions about using the I See Reasoning eBooks. My passion and expertise is in developing children’s ability to reason mathematically and building children as mathematical problem-solvers.

Click here to join the I See Maths mailing list and receive the latest new resources to trial.

Mathematical Reasoning Routines

We all have a very limited attention: as you might be aware, children can’t think about many different things at once! So establishing routines that promote mathematical reasoning – routines that children become familiar with – will allow children’s attention to be focused on the key learning in the lesson. Thinking about these routines in advance can therefore be very important.

And so much better if these routines are consistent throughout the school. In Thinking Deeply About Primary Mathematics by Kieran Mackle, I loved Matt Swain’s routine for how children hold up their whiteboards. The children always hold their whiteboards to their chests; the teacher tells the children to put their boards down one table at a time. When children are familiar with routines like this, their attention isn’t wandering to ‘will Mr Swain see my answer?’ but is held on the content of the lesson.

Here are four routines that I think support learning in a primary maths classroom:

Pair work: short independent thinking slots
In pair work, I often ask children to start by working on a task individually before discussing with their partner. This promotes different methods/thought processes and lessens the risk of one partner becoming too dominant in a conversation. The length of time that I would expect children to work independently will increase as they get older, but it’s something I try to establish with all children. In most contexts, I’d have periods of silence when working independently – children find it more difficult to block out background noise than adults. I have found that these short periods of individual thinking make children value their collaboration time more.

Re-state the views of others
In group or whole class discussions, I generally try to spend longer drawing out the detailed thinking of a child or a small number of children. It’s important, though, that all children are actively thinking about what is being discussed. As a result, I routinely ask children to re-state the opinion of the person that has been speaking. This helps children to follow a conversation rather than just thinking about what they would like to say or to give their opinion. It also opens children up to different ways of thinking or different methods.

Doubt at the point of answer
I want children to focus on the process of their thinking and encourage them to reason. I don’t want children overly focused on whether answers are right or wrong. As a result, I tend to react with indifference when children give an answer. This gives children a reason to explain their thinking and it shows them that the thing I value is their thought process. Also, where a child has answered some questions and has made a few mistakes (but doesn’t hold a clear misconception) I often tell them how many questions they have got correctly/incorrect and ask them to find their mistakes. This gives the child more thinking to do than when the questions are marked and they simply correct their mistakes.

Consistency in question types
I like to have a consistent bank of question types, using common headings, throughout the maths curriculum. These common question types are woven throughout my I See Reasoning eBooks (this blog explains some of the Y3 & Y4 techniques and this blog explains about some of the Y5 & Y6 techniques). So when building understanding, children are used to being given an Explain the Mistakes task; they know that they will be asked to explain links between questions when answering Small Difference Questions and they have become used to working systematically when given a How Many Ways? challenge. By establishing these norms, we can focus more of the children’s attention to the maths content of the task, rather than having to explain how to approach each new technique. I hope the eBooks are super-useful for this!

I’m happy to host training events on Building Reasoning Routines and Building Problem-Solvers for the 2021-2022 school year and I’m working alongside teachers to implement these ideas in the classroom. Please get in touch by emailing iseemaths@hotmail.com if you are interested in receiving support in these areas. I will also keep sharing new resources for people to trial for those people signed up to my mailing list.

Also, please share your favourite school or classroom routines, however big or small. How do they create a positive learning culture? How do they help to direct children’s limited attention in a productive way? I’d love to pick up and share new ideas!

Why I See Reasoning – Y5 and Y6 is new and unique!

I’m delighted to have  released the eBooks I See Reasoning – Y5 and I See Reasoning – Y6. They are an exciting development from anything I’ve done before and will enrich all children’s mathematical thinking. Here’s what makes them unique:

Detailed breakdown of small steps
For children to understand the individual parts of mathematical processes, I’ve introduced lots of new questions for breaking down learning into small pieces, focusing children’s thinking on specific points. For example, Next Step questions get children to analyse specific parts within calculations and Part-Complete Examples support children as they first learn to use methods. As ever, a range of misconceptions are addressed with Explain the Mistakes examples.

Opening up patterns and developing flexible thinking
There are lots of sequences of Small Difference Questions which highlight key mathematical relationships and give children surprises. For example, when children realise that different questions give the same answer, we can explore why. There are so many other patterns to uncover! There’s also a massive range of tasks that promote flexible thinking and using different strategies:

Explores big mathematical ideas (including word questions!) and allows children to create
Each topic is explored from a wide range of different angles. We look at different contexts for rounding; algebraic ideas are explored through shape puzzles; concepts are interleaved as children calculate angles between the hands of a clock at different times. There are ‘numberless’ word questions, where children explore different question structures without numbers, tasks where children are invited to create their own questions or extend sequences and How Many Ways? tasks to open up investigations!

Comprehensive
I See Reasoning – Y5 has 362 tasks and I See Reasoning – Y6 has 396 tasks, compared to the 176 tasks of the predecessor, I See Reasoning – UKS2. The tasks cover every area of the curriculum and they incorporate the ideas from the latest DfE Mathematical Guidance. And answers are given for every question!

The eBooks cost £24.98 each and only one copy of each eBook is needed per school. I believe this represents amazing value!

Click here to order I See Reasoning – Y5 and click here to order I See Reasoning – Y6.

I hope I See Reasoning makes a huge impact on your teaching and helps all children to think mathematically. Please spread the word!

My very best wishes to everyone for the new term,
Gareth

Counters & bar models used to unpick a classic PS question

This question is taken from the Y3 Autumn term White Rose Progress Check assessment:

I’ve really enjoyed exploring this question type (although, I have to admit, never yet with children as young as Y3). I want children to see and feel the structure of this type of problem, building up to being able to answer a question like the example above in small steps. Then, by working through a series of related questions, children will learn how to use efficient problem-solving strategies. They will also come to see that questions with different ‘surface features’ can have a very similar mathematical ‘deep structure’.

To start with, using double-sided red/blue counters, children attempt the question below:

Often, children start with 8 counters – 4 red, 4 blue. Then, they turn over two blue counters. They realise (with a nudge) that the difference between the number of red/blue counters is incorrect. With a bit more cajoling, we see only one counter needed turning over. At this point I line the counters up above/below each other. I suggest, rather than starting with the correct number of counters, we could start with the correct difference. Have 2 more red counters than blue counters; keep adding a red & blue until you have 8 counters.

That technique, or other methods, are then be practised using the question below. We note that this question is worded slightly differently, but see that the red/blue counters can still be useful:
This time, many children start by laying out four blue counters. We note that ten more counters are needed (5 blue, 5 red). Other children get 14 counters and experiment with how many to turn over. We look at these different approaches. Then, I draw a bar model around the counters (like for the original example), drawing a dotted line to highlight the difference of 4 counters.

Now it’s time for a worked example and another ‘different surface, same deep structure’ question. In this case, I model how to answer the question using the ‘start from the difference’ technique:
Having shown that the difference between the prices is 10p, the cost of the rubber can be calculated by halving 30p (a common incorrect answer to this question is pencil=30p, rubber=10p).

Children then attempt questions that have a very similar structure, still regularly using the counters. Some children are given slightly extended challenges:
Here’s another lesson example of how to break down the problem-solving process. I See Problem-Solving – UKS2 is designed to give teachers the tools to teach problem-solving systematically too. Work will start on the LKS2 version in January 2019. I can’t wait!

One of my favourite investigations

This is one of my very favourite mathematical investigations from I See Reasoning – UKS2: there’s a great pattern to explore. When I was in Y6 it was one of my ‘go to’ tasks for this time of year. Here’s our first discovery:

Despite having the same sum, the numbers give different products. And the further apart the numbers get, the smaller the product. But look at this:

There’s a pattern to how the products decrease: 1 less, 4 less, 9 less, 16 less. This is a pattern of square numbers. How odd! I wonder… is this the case for this example only? Or would it work for any example where the sequence starts from a square number? So the exploration continues, and we see that the pattern is repeated (e.g. 10×10=100, 11×9=99, 12×8=96, 13×7=91).

Eventually, I would challenge the children to use this knowledge to perform calculations. For example, consider 23×17. We know 20×20=400, so it follows that 23×17=391 (9 less than 400).

A beautiful pattern to explore!

 

Promoting Reasoning Part 4: Depth

In this final blog in the ’embedding reasoning’ series, I am sharing some of my favourite strategies for deepening learning. I love the back end of a sequence of lessons, where you can build on children’s growing understanding. Rich conversations emerge and children can apply their skills with increasing flexibility.

Nowadays, there is an increased emphasis on looking for the different ways children might find an answer. I think this is great, assuming we have given children enough tools to find different strategies (and discern the most efficient). Initially I often provide some scaffolds to point children towards different methods (see below-left). I also love ‘rank by difficulty’ as a tool for generating discussion. It helps to draw out the different ways children approach questions and focuses their conversations on key learning points.

To deepen learning, I’m always thinking about ways of stripping back the information that is given within a question. I can always put extra information back in where needed (or specifically requested), but by starting with less I can often have a more open dialogue. Consider the below-right example: I can always add in the squares to the 100-square, or other numbers. But by starting with less information I have a more open discussion about the possible values in the red boxes.

Finally, I love using ‘how many ways?’ as my final question type. Children can access a how many ways task at level 1 (I can find a way) or level 2 (I can find different ways), but the step to be working at level 3 (I know how many ways there are) creates a different kind of challenge. We may have to model how to order thinking systematically as children strive to find all possible answers. Previously taught calculation skills are becoming automated and rich opportunities for reasoning emerge.

All the examples in this blog are from the ‘I See Reasoning’ eBook range:
I See Reasoning – KS1
I See Reasoning – LKS2
I See Reasoning – UKS2

Also check out the other blogs from the series.